Two Fracture Sets, Four
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and Probable Shearing during

Production from Fractured
Reservolirs
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CONVENTIONAL GEOPHYSICS ASSUMPTION

The conventional interpretation of shear-wave polarization is that the
fast axis is caused by one set of stress-aligned fractures or
microcracks.

A guestion arises as to whether there could actually be two sets
causing the registered anisotropy from shear-wave polarization.

A significant number of fractured reservoir cases seem to be showing
as much as 20° to 40° rotations of the polarization axes of S, or
maximum Vg relative to interpreted o, directions.

This is possibly because more than one set of fractures is present, as
expected in most rock masses. Unequal components (compliances,
apertures, fracture densities) from both sets?

It may also be due to the logic that fractures under shear stress are
usually the best conductors, both from geomechanics principles, and
from actual deep well inflow measurements.

Two fracture sets bisected by a principal stress direction may be a very
logical model?
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TWO SETS....FOUR COMPLIANCES...ETC

In the case of two sets of (conjugate) fractures, the shear
wave components qS; and S, depend on both the shear
and normal compliances, since the incident angles are no
longer parallel to the fractures. The conjugate pair of dipping
fracture sets are typical of domal / anticlinal reservoirs (e.g.

Ekofisk, Valhall).
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The joints under
significant shear stress
are the best conductors in
the case of hard
crystalline rocks.

(Should surely apply to
reservoir rocks too??)

Colleen Barton et al. 1995



FRACTURES ARE ‘CLOSED’ OR ‘OPEN’ DEPENDING ON
ORIENTATION, STRESS LEVEL AND ROUGHNESS

« The non-conducting fractures in deep wells are
presumably held ‘closed’ by the resultant normal stress,
which would be consistent with geomechanics modelling.

« But with sufficient fracture roughness and wall strength,
apertures could be large enough to be ‘open’ // on.

* Minerally ‘bridged’ partly open fractures can also be // an,

« Mobilized friction coefficients y of mostly 0.5 to 0.9 have
been interpreted in the case of numerous deep wells
with shear-stressed conducting fractures, e.g. Zoback
and Townend, 2001.
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NORMAL STRESS (MPa)
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Note (also) the opposite ‘rotations’ of open lenses (‘O’) and
contacting rock (‘R’) seen in physical models of shearing.
Barton (2006).




FRACTURE SETS THAT ARE UNDER SHEAR STRESS ARE VERY
COMMON, AND THEY MAY BE AMONG THE BEST CONDUCTORS - BOTH
FROM OBSERVATION AND FROM ROCK MECHANICS THEORY
(Barton et al. 1985, C.Barton et al. 1995, Barton, 2006)
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NUMEROUS ROCK
MECHANICS
PROCESSES AT
MANY SCALES WERE
SET IN MOTION BY
PRODUCTION FROM
THE FRACTURED
CHALK AT EKOFISK

The principal
mechanisms were
effective stress
Increase, compaction
and shearing (at
many scales)



Slickensided fractures

Newly developed slickensides identified many years
after exploration are evidence of shear-with-production
mechanisms at e.g. Ekofisk.

These were discretely modelled in 1986/87 yet hardly
believed, prior to subsequent recognition as production-
related slickensiding.

Slickensides were apparently not detected during
exploration of the Ekofisk field in the late 1960’s.

Later, Albright et al. (1994) mention Ekofisk exhibiting:
‘Shear fracture micro-seismicity, possibly indicating that
subsidence Is caused by a combination of pore collapse
and shear sliding’.



Distinct element UDEC-BB modelling of compaction-induced shearing of natural
conjugate fracture sets in Ekofisk chalk, from Barton et al. 1986,1988.

Fracture shear (max 4 to 10mm) and dilation causes changes to fracture
permeabilities, which can be sequentially tracked by following physical aperture (E)
and conducting aperture (e) developments (see later discussion of apertures E and
e)

Fracture density, as conventionally defined (and ambiguously used) in geophysics
(e=N.a%/ V) is as high as 1.4 for portions of this reservaoir.
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These were the initial boundary conditions for the discrete-
fracture modelling of an idealized ‘“1m block’ of Ekofisk chalk

(2D - UDEC-BB model)
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Conjugate sets of fractures

Two figures showing very extensive evidence of flow directions from
pairs of wells (injector/producer) from Heffer, 2002 and Heffer et al.
2007( = half a million pairs of injector-producer wells, aggregated
from eight field areas).

Measurements in individual producer wells from Laubach et al.
2000, suggesting conjugate macro-fractures.

All are suggesting the strong probability of anisotropy-axis deviation
from o ageee-ee due to flow (and polarization) contributions from
uneqgual conjugate sets??
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IMPORTANCE OF JOINT (or fracture) ROUGHNESS and
STRENGTH CHARACTERIZATION (for understanding
contributions from different fracture sets)

JRC = joint roughness coefficient (see next screen) is used to estimate
shear strength, dilation, physical-to-hydraulic-aperture conversion,
shear and normal stiffness.

JCS = joint wall compression strength (usually < UCS, due to
alteration/weathering) is also needed.




RATIO OF (E/e)

JRC — and illustration of one
of Its uses
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Apertures E (= e) will actually affect several assumptions in geophysical
modelling (e.g. fracture aspect ratio - squirt losses — volume of fluid)

Ratio of E/e or AE/Ae
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Civil engineering applications of apertures (E) and (e)

joint mech. aper. joint hydr. aper.
max mech aper = 1.160E-03 max hydr aper = 1.160E-03
each line thick = 2.000E-05 each line thick = 2.000E-05



CHARACTERIZATION OF JOINTS OR FRACTURES (Barton, 1999)

Shear box and index testing of rock joints
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COMPLIANCES and STIFFNESSES

The potential magnitudes of the shear and normal fracture
compliances, the inverse of (dynamic) stiffnesses, dictate the
strength of shear wave anisotropy, the degree of attenuation, and
the interpretation of fluid type in the case of shear waves that are not
propagated in perpendicular or parallel directions relative to
fracturing.

Barton (2006) found from experimental studies such as Pyrak-Nolte
et al. (1990), and Bandis et al. (1983), that the overall range of
reported data for pseudo-static stiffness Kn and normal compliance
B, suggested Kn(static) = 1/ B, (dynamic) in this stiffest of loading
directions. (i.e.10*?to 10-** m.Pa* = 1/1000 to 1/100,000 MPa/mm).

This is despite the huge differences in displacement between the
dynamic and static case. This may be due to ‘traversing’ the same
stress-displacement curves, but over widely differing increments.



Normal stress (MPa)

JCS 157 MPa, JRC 7.6
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Normal stress 6, MPa
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CONCLUSIONS

. Shear-wave splitting is conventionally thought to be caused by stress-
aligned open micro-cracks, and/or by a set of stress aligned vertical
fractures in an NFR (naturally fractured reservoir) context.

. There are other possibilities if two conjugate sets are present and each are
under shear stress, for which there can be several scenarios.

. This ‘fractures-under-shear-stress model, certainly true in the case of domal
or anticlinal NFR, is more consistent with geomechanics principles (and
deep-well measurements) that indicate clearly that fractures under shear
stress are better conductors of fluids.

Newly developed slickensides identified many years after exploration are
evidence for such a shear-with-production mechanism at Ekofisk, and were
discretely modelled, yet hardly believed, prior to recognition as production-
related slickensiding.

If one of the shearing fracture sets is dominant, and with different strike, it
would probably give detectable 4D effects, such as rotation of both
anisotropy and attenuation axes, and rotation of the principal permeability
axis as well.

Dynamic normal compliance B, is of similar magnitude, when inverted, to
the pseudo-static normal stiffness Kn that is much researched in rock
mechanics. The dynamic shear compliance B; may be scale-dependent,
perhaps following, but with reduced intensity, the better known scale-effect
trends for the pseudo-static shear stiffness Ks.



